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ABSTRACT 

 

A major source of information for identifying subcellular 

location on a proteome-wide basis will be imaging of tagged 

proteins in living cells using fluorescence microscopy.  We 

have previously developed automated systems to interpret 

images from such experiments and demonstrated that they 

can perform as well or better than visual inspection.  Recent 

work demonstrates that these methods can be applied to 

large collections of images from sources as diverse as yeast 

expressing GFP-tagged proteins and human tissues imaged 

by immunocytochemistry. A distinct but related task is 

learning what location patterns exist. We have demonstrated 

clustering of mouse proteins into subcellular location 

families that share a statistically indistinguishable pattern. 

To communicate each pattern, we have developed 

approaches to learning generative models of subcellular 

patterns. Integration of high-throughput microscopy and 

automated model building with cell modeling systems will 

permit accurate, well-structured information on subcellular 

location to be incorporated into systems biology efforts. 

 

Index Terms— Location proteomics, tissue micro-

array, pattern recognition, generative models, high 

throughput microscopy 

 

1. INTRODUCTION 

 

An important challenge in the post-genomic era is to 

identify subcellular location on a proteome-wide basis. 

High-throughput microscopy systems provide an important 

capability to enable this task, especially when combined 

with tagging of proteins in living cells using fluorescence 

protein fusions.  The large volume of images generated by 

high throughput systems requires automated systems for 

interpretation.  Automated systems not only can recognize 

all major subcellular patterns [1-3], but they can perform as 

well or better than visual inspection [4-6].  Examples of 

major patterns used for development and testing of these 

systems are shown in Figure 1.  Whether automated 

approaches can be applied to sets of proteins approaching 

the proteome size has not been clear. We discuss here 

approaches to comprehensively and systematically 

analyzing protein subcellular location and especially how 

the resulting knowledge can be integrated into predictive 

cell models. 

 

 

2. PROTEOME-WIDE PATTERN CLASSIFICATION 

 

Initial work on subcellular pattern analysis was focused on 

images of cultured cells for a small set of proteins known to 

localize to each of the major subcellular structures.  An 

important question therefore was whether such methods 

could be extended to larger image collections and more 

difficult cellular contexts.  The recent public availability of 

image collections for large numbers of proteins has made 

addressing that question feasible.  An important example is 

the UCSF yeast GFP (green fluorescent protein) localization 

database, which contains images of GFP-fusions for most 

suspected protein-coding regions in S. cerevisiae [7].  Each 

Figure 1. Example images of protein subcellular location 

patterns from the 2D HeLa collection [1] (available from 
http://murphylab.web.cmu.edu/data). DNA distributions are 

shown in red and protein distributions are shown in green. 
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image in the collection was annotated by two human 

curators using one or more of 22 subcellular location terms.  

The difficulty of analyzing this collection stems from the 

small size of yeast cells (relative to mammalian cells for 

which all previous automated analysis has been done) and 

the presence of clumps of cells and out-of-focus cells in the 

images in the collection.  Since common cell segmentation 

methods such as seeded watershed did not work well for this 

collection, we developed a graphical model-based method 

for segmenting the images and removing cells that did not 

show expected ellipsoidal geometry [8].  Using this method 

combined with the Subcellular Location Features we have 

described previously, we built classifiers for those images 

annotated as belonging to only one location class [9].  The 

accuracy of this classifier was over 80%, and that accuracy 

increased to nearly 95% when only proteins for which the 

classifier estimated a high confidence were considered.  

Interestingly, for the proteins for which the high-confidence 

assignments differ from the human annotations, re-

examination of the images suggests that at least some of the 

automated assignments are more likely to be correct.  An 

example image for a protein whose automated assignment 

appears to be more accurate than the human assignment is 

shown in Figure 2.  Further work will be needed to resolve 

the differences between visual and automated assignments, 

but the approach described should be useful for 

automatically annotating subcellular location for new yeast 

species, for strains with different genotypes, or for a given 

strain under different conditions. 

 

 

Another important publicly-available collection is the 

Human Protein Atlas, which contains images for thousands 

of proteins in all major human tissues [10].  These images 

were collected using immunocytochemistry with well-

characterized mono-specific antibodies and an automated 

imaging platform, with an initial goal of documenting the 

level of expression of each protein in each tissue.  While the 

images have lower resolution than those previously used for 

automated subcellular pattern analysis, we have recently 

obtained encouraging results demonstrating the feasibility of 

training a single classifier to recognize the major subcellular 

patterns across all tissue types [11].  These results set the 

stage for analyzing variation in subcellular pattern (if any) 

for each protein from tissue to tissue. 

 

3. LEARNING SUBCELLULAR PATTERNS USING 

CLUSTER ANALYSIS: SUBCELLULAR LOCATION 

FAMILIES 

 

The development of the systems mentioned above that are 

capable of assigning proteins to major subcellular location 

categories has been an important step in demonstrating the 

applicability of automated image analysis approaches to 

fluorescence microscope images.  However, we have 

previously proposed that unsupervised methods are more 

appropriate to the analysis of protein subcellular location 

patterns [4].  We have used the retroviral CD-tagging 

technology developed by Jarvik, Berget and colleagues [12] 

to collect increasing numbers of images of mouse 3T3 cells 

expressing proteins randomly-tagged with GFP and then 

cluster them into Subcellular Location Trees [6, 13, 14].  As 

the number of tagged lines examined has increased, the 

number of statistically distinguishable clusters has also 

increased (Table 1).  The number of clones examined is 

currently over 1,000 and growing (unpublished data). 

 

 

Number of clones 

Number of 
clusters found 

 
Reference 

46 12 [13] 

87 17 [14] 

126 35 [6] 

174 41 [6] 

Table 1. Estimating number of statistically distinguishable 

subcellular location patterns in 3T3 cells. 

 

Figure 2. Portion of image of ORF YGR130C downloaded 

from the UCSF yeast GFP fusion localization database 

((http://yeastgfp.ucsf.edu). The DNA distribution is shown 

in red, the estimated cell boundary found during cell 
segmentation is shown in blue, and the GFP-fusion protein 

distribution is shown in green.  This protein was classified 

as a punctate_composite protein in the UCSF database and 

classified as a cell_periphery protein by automated 
localization with 60.7% confidence. The CYGD database 

annotates it as a mixture of cytoplasm and 

punctate_composite protein. 
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This approach groups proteins that show patterns that are 

statistically indistinguishable (at least under the conditions 

used for imaging), and many of these proteins are likely to 

be part of stable complexes.  A complementary approach is 

to search for unique combinations of proteins that are found 

within a single pixel or region using images obtained by 

repeated cycles of staining of fixed cells (an approach 

termed MELK) [15].  This identifies proteins which may 

interact but do not necessary remain together throughout the 

cell. 

 

4. CAPTURING AND COMMUNICATING 

SUBCELLULAR LOCATION PATTERNS: 

GENERATIVE MODELS 

 

The ability to group proteins into location families without 

human intervention has powerful implications for using 

high-throughput microscopy to characterize proteins on a 

proteome-wide basis.  However, it begs the question of how 

to communicate what distinguishes each family in the 

absence of a priori category definitions.  For this purpose, 

we have proposed that a generative model can be used to 

represent each family, much the same as generative Hidden 

Markov Models can be used to summarize sequence 

families.  We have therefore developed approaches to 

directly learning generative models of subcellular patterns 

from images [16].  These can be used to synthesize images 

that in a statistical sense are drawn from the same 

underlying population as the images used for training.  An 

example of a generated image for the endosomal 

(Transferrin Receptor) pattern is shown in Figure 3.  The 

models can be communicated in compact XML files that are 

compatible with cell model descriptions captured in SBML.  

We anticipate combining these models to construct cell 

models containing all expressed proteins in their proper 

locations. We are currently working to integrate our tools 

with existing cell modelling systems, such as Virtual Cell 

[17] and MCell [18],  to permit accurate, well-structured 

information on subcellular location to be incorporated into 

systems biology efforts. 
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